Nutrient Management for 80+ Bushel Soybean

Terry Wyciskalla CPAg, CCA, 4R Wyciskalla Consulting, LLC Nashville, IL

> Better Bean Series Carlyle, Illinois January 16, 2019

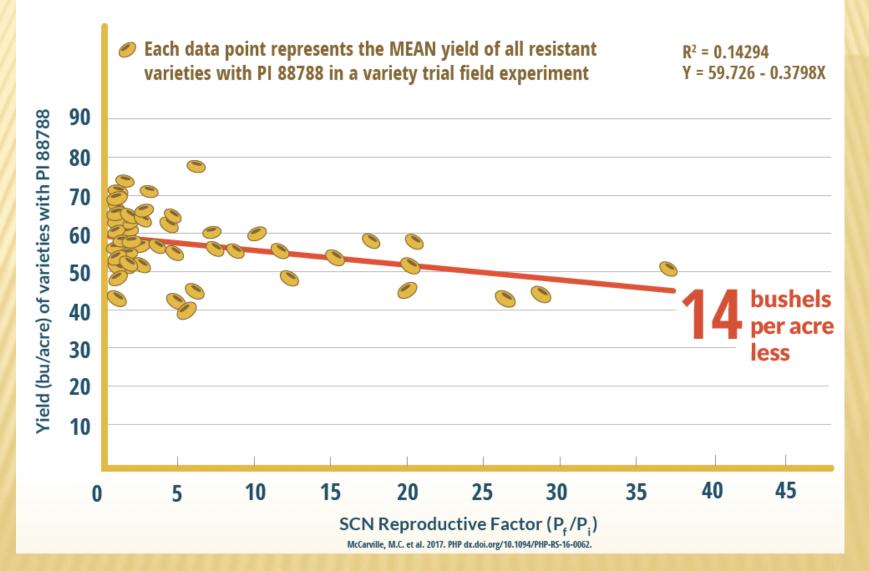
One and Done! For 80 bu Soybean

Mother Nature Needs to Cooperate

Basic Steps for High Yield Soybean

- Field Selection/Crop Rotation Avoid multiple years of soybean in the same field.
- 2. Proper Seed Selection and Seed Treatments Inoculate the seed with *B. Rhizobium japonicum*.
- 3. Correct Plant Population 130,000 to 150,000 seeds per acre? Replant <90,000 per acre
- 4. Plan your Weed Control Program Use overlapping Soil Residuals and Rotate the Chemistry.
- 5. Test fields for SCN.

SCN Reproduction on Some Current Varieties


Table 7. Moorhead (WC Iowa) Glyphosate-resistant.

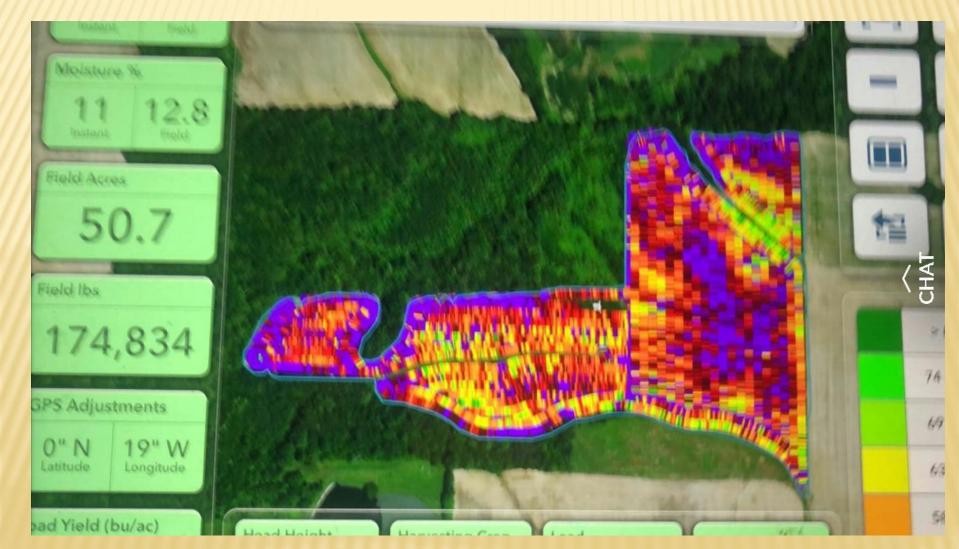
		Relative			SCN #		
Brand	Variety	maturity	Resistance	IDC	(eggs/100cc) ¹	SCN RF ²	Yield (bu/acre)
NuTech	7279	2.7	PI 88788	2.8	5,075	2.1	79.6
Dyna-Gro	S26RS75	2.6	PI 88788	2.4	5,950	2.4	79.0
Kruger	K2X-2652	2.6	PI 88788	2.5	6,550	3.1	78.3
NuTech	7224	2.2	Peking	2.0	1,525	0.5	77.0
XL ®	285R4	2.8	Peking	2.4	1,100	0.5	76.6
ASGROW	AG24X7	2.4	PI 88788	2.6	3,650	1.4	75.3
NK	S30-C1	3.0	PI 88788	1.8	6,750	2.3	75.3
LG Seeds	C2441R2	2.4	PI 88788	1.8	5,950	2.6	74.9
Stine	24RE03	2.4	PI 88788	2.9	4,850	2.6	74.8
4 Star	3X240	2.4	PI 88788	2.8	4,575	1.5	74.4
NK	S28-N6	2.8	PI 88788	2.0	3,200	1.4	74.3
ASGROW	AG27X7	2.7	PI 88788	2.8	7,525	3.5	74.2
Hoegemeyer HPT	2811NR	2.8	PI 88788	2.4	5,450	3.6	74.0
Mycogen	5N245R2	2.4	PI 88788	2.4	5,075	3.1	74.0
Hoegemeyer HPT	2913NR	2.9	Peking	2.5	700	0.4	73.4
LG Seeds	C2520R2	2.5	PI 88788	2.3	6,450	3.1	73.4
Dairyland Seed	DSR-2330/R2Y	2.3	PI 88788	2.2	7,250	2.8	72.8
Legacy Seeds	LS-2437N RR2	2.4	PI 88788	2.0	5,625	2.4	72.3
Pioneer	P28T08R	2.8	PI 88788	2.2	3,025	1.6	72.1

Greg Tyklka – ISU Variety Trials. https://www.plantpath.iastate.edu/tylkalab/iowa-stateuniversity-scn-resistant-soybean-variety-trials

AS SCN REPRODUCTION INCREASES,

yields decrease by as much as 14 bushels per acre.

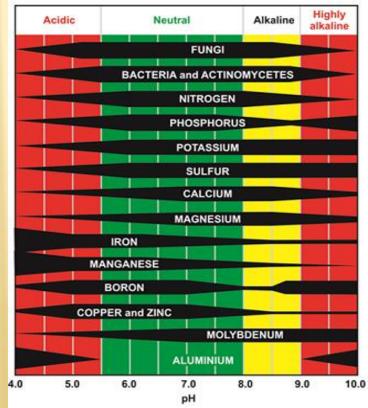
SCN Samples – Fall 2017 and Fall 2018


<u>, , , , , , , , , , , , , , , , , , , </u>		
Sample	County	Eggs/250 cc
WC-171	Clinton	2,900
WC-271	Clinton	5,200
WC-371	Clinton	10,300
WC-471	Clinton	26,800
WC-571	Perry	45,075
WC-671	Washington	7,900
JCB-171	Effingham	500
JCB-271	Effingham	21,800
JCB-371	Effingham	33,000
WC-1081	Washington	42,240
WC-2081	Washington	16,240
WC-2181	Washington	27,040
WC-3081	Franklin	11,600
WC-4081	Randolph	94,000

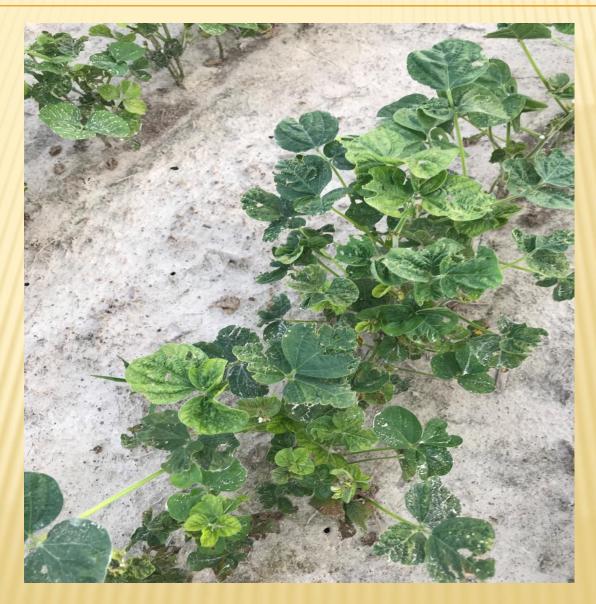
Samples analyzed by the University of Illinois – Plant Clinic

SCN Samples – Fall 2017 and Fall 2018

38 bu/acre Yield in Purple Area, SCN Eggs = 42,240


High Yield Soybean Nutrient Management

- 1. Soil pH and Liming
- 2. Nitrogen
- 3. Phosphorus
- 4. Potassium
- 5. Sulfur the Next Macronutrient?
- 6. Micronutrients Zinc and Boron


(Don't forget the 4R's – Right Source, Rate, Time and Place)

Why is Proper Soil pH and Liming Acid Soils Important?

- 1. The performance of soil-applied herbicides can be adversely affected.
- 2. Reduced activity of symbiotic N fixing bacteria.
- 3. Availability of nutrients such as P, K and Mo is reduced.
- 4. Tendency for K to leach is increased.
- 5. Correct a possible Ca deficiency.

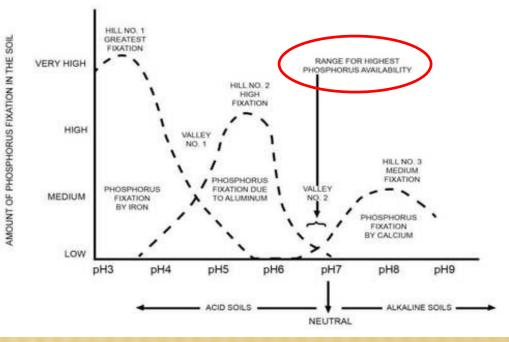
Low Soil pH – Ca Deficiency and Manganese Toxicity

Nitrogen Fertilizer for Soybean?

- 1. Soybeans need 4-5 lbs of N per bushel.
- 2. 3 lbs of which is in the seed.
- 3. O. M. in general releases 20-30 lbs of N per %O.M.
- 4. The balance is provided by the nodules.
- ** The nodules don't start supplying large quantities of N until about the V3-V4 stage.
- ** Starter fertilizers can help but do not exceed 30 lbs/acre Actual N (affects biological fixation).

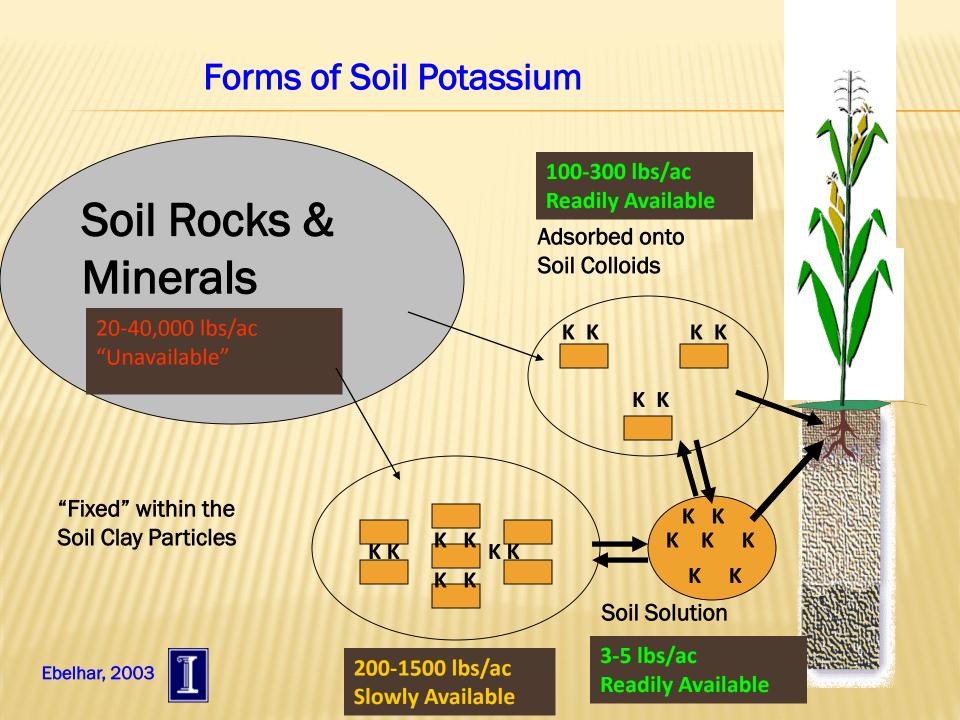
Nitrogen Fertilizer for Soybean?

Soybean Yield	Ibs/acre N	Ibs/acre N	
<u>(bu/acre)</u>	<u>Needed</u>	from Nodules*	
40	160-200	100-140	
50	200-250	140-190	
60	240-300	180-240	
70	280-350	220-290	
80	320-400	260-340	


* Assumes 30 lbs N from O.M. and 30 lbs N from Starter Fertilizer.

** 2018 had excellent moisture and healthy nodules all season.

PHOSPHORUS (P) AND POTASSIUM (K)


P Availability is Affect by:

- 1. Amount and Type of Clay
- 2. Application Time and Method
- 3. Aeration and Compaction of the Soil
- 4. Level of Soil P & other nutrient interactions
- 5. Soil Moisture and Temperature
- 6. Soil pH (6.8-7.1)

What Happens to Applied Fertilizer K?

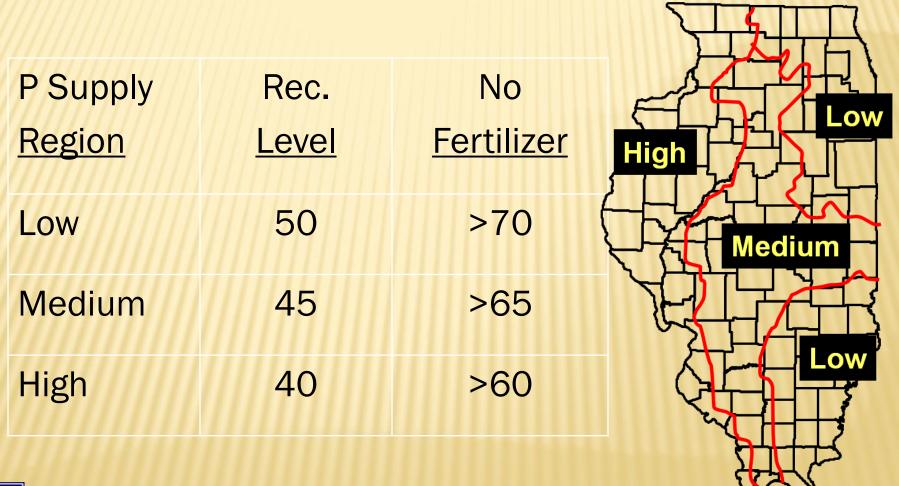
- 1. It can be held in the exchangeable form (CEC).
- 2. Some will remain in soil solution.
- 3. Some will be taken up by the crop.
- 4. Part will be "fixed" by the clays.
- 5. Some may leach in very sandy or acidic soils.
- *** Declining Soil Test K Values?

Roots contact only a small percentage of all available nutrients. Therefore, potassium fertilization is necessary to ensure that adequate K is in the system for plant uptake.

K Deficiency

Photos by Wyciskalla Consulting

Building Soil Test P and K Levels

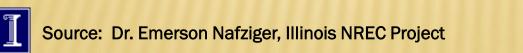

On Average, it takes:

 9 Ibs P₂O₅ to change a soil test by 1 lb P/acre (~20 lbs/acre DAP)

4 lbs K₂O to change a soil test by 1 lb K/acre (~7 lbs/ac Potash)

Buildup Levels for Soil Test P (lbs/acre)

Buildup Levels for Soil Test K (lbs/acre)


CEC <u>Region</u>	Rec. <u>Level</u>	No <u>Fertilizer</u>
Low/Sands	260	>360
High	300	>400

Grain P and K: summary to date

///////////////////////////////////////	No. of	Average	Range	Book	% change	Iowa State
Nutrient	samples	value	25th -75th%	value	BV to 75th%	numbers
			Ib P/K	(oxide)	per bushel	
Corn P	2,140	0.34	0.31- 0.37	0.43	-14	0.32
Corn K	2,140	0.23	0.22- 0.24	0.28	-15	0.22
Soy P	2,181	0.70	0.66- 0.75	0.85	-12	0.72
Soy K	2,181	1.11	1.06- 1.17	1.30	-10	1.20
Wheat P	625	0.42	0.36- 0.47	0.60	-22	0.55
Wheat K	625	0.26	0.23- 0.28	0.30	-8	0.27

High Yield Soybean - Maintenance P and K

Soybean Yield (bu/acre)	lbs/acre DAP <u>to Apply</u>	Ibs/acre Potash <u>to Apply</u>	
40	74 (65)	87 (78)	
50	<mark>92</mark> (82)	108 (98)	
60	111 (98)	130 (117)	
70	129 (114)	152 (137)	
80	148 (130)	173 (156)	

Assumes 0.85 lbs/bu P_2O_5 and 1.30 lbs/bu K_2O Assumes 0.75 lbs/bu P_2O_5 and 1.17 lbs/bu K_2O

SULFUR (S)

Sulfur Needs of Soybean?

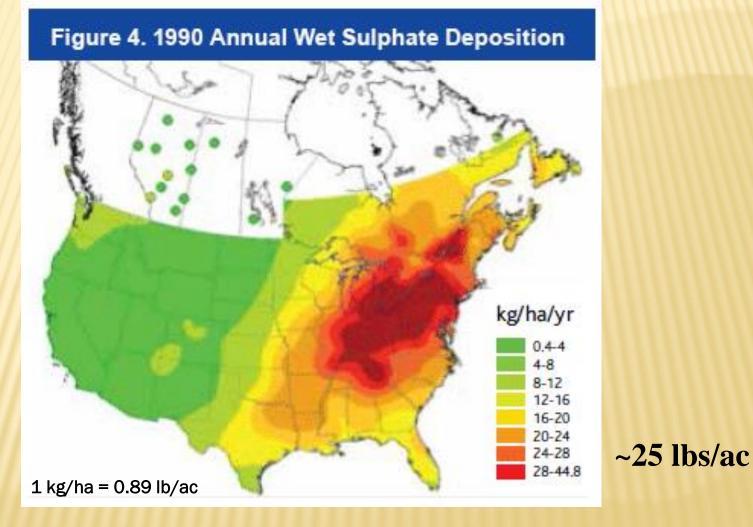
On Average, it takes about 0.35 lbs S per bushel (O.M. can supply 2-3 lbs S total, annually)

Soybean Yield	Ibs/acre S	lbs/acre	lbs/acre
(bu/acre)	Needed	<u>90% S</u>	AMS (and N)
40	14	16	60 (13-N)
50	18	20	75 (16-N)
60	21	23	88 (19-N)
70	25	28	104 (22-N)
80	28	31	117 (25-N)
Recommended	35	39	146 (31-N)

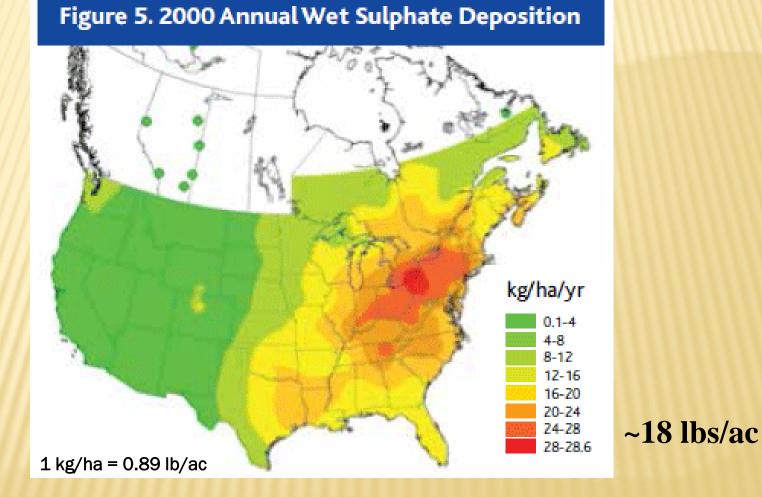
Sulfur Deficiency in Wheat

0.24% plant S 18 lb/ac soil S 0.13% plant S 6 lb/ac soil S

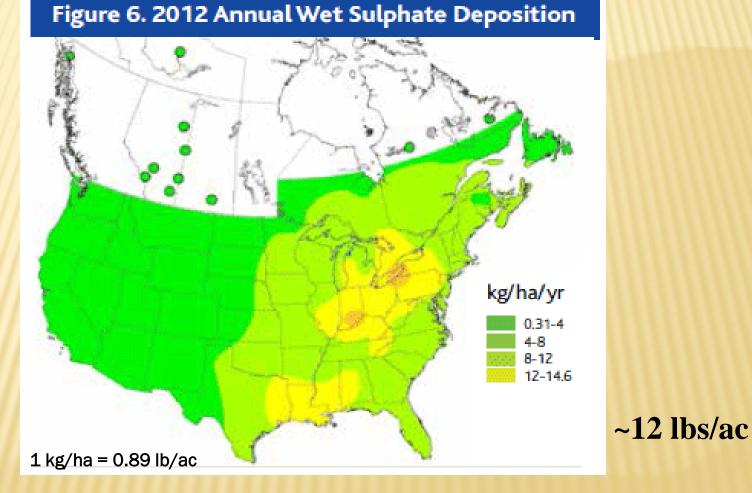
S Deficiency in Soybean



0.11% plant S 7 lb/ac soil S


Photo by Wyciskalla Consulting, 2018

Decreased Atmospheric S Deposition


Source: US EPA – National Atmospheric Deposition Program

Decreased Atmospheric S Deposition

Source: US EPA – National Atmospheric Deposition Program

Decreased Atmospheric S Deposition

Source: US EPA – National Atmospheric Deposition Program

S Sources and Soybean Yield, Purdue Univ.

18 Sulfur Sou	rces: LaCrosse
Source	Yield (bu/ac)
UTC	62.4
AMS	72.0
MES10	73.4
Gypsum	72.8
K-Mag	67.9
Tiger90CR	65.5
AMS:Tiger	68.8
spray.ATS	68.6
R3.Foliar.AMS	69.4
SOYBEA	51 2018 Casteel, Purchie University - 46
California (
EX THE	

Example Scenario:

If a Producer applies:

200 lbs/acre DAP 150 lbs/acre Potash

Has a Soil P test Has a Soil K test 35 lbs/ac P (medium) 180 lbs/ac K (low)

Did they supply enough nutrients for the crops?

Assumes using the U of I IAH Buildup + Maintenance Fertilization Scheme

Soil Buildup Requirement

- K_20 Needed = 260 lb K_20 180 lb K_20 = 80 lb K_20
 - = $(80 \text{ lb } \text{K}_2 \text{O} \text{ x} \text{ 4})$ divided by 4
 - = 80 lb K₂0/acre/year for the Soil (4 years)
 - = 133 lbs/ac Potash/year (4)

P Fertilization Example

P₂O₅ Removed

- = 40 bu/acre (Soybean) x 0.75 lb P_2O_5 /bu = 30 lb P_2O_5 (65 lbs/ac DAP or TSP)
- = 60 bu/acre (Soybean) x 0.75 lb P_2O_5 /bu
- = $45 \text{ lb P}_2\text{O}_5$ (98 lbs/ac DAP or TSP)
- = 80 bu/acre (Soybean) x 0.75 lb P_2O_5 /bu
- = $60 \text{ lb } P_2 O_5$ (130 lbs/ac DAP or TSP)

These values do not take soil test levels into consideration.

K Fertilization Example

K₂O Removed

- = $40 \text{ bu/acre (Soybean)} \times 1.17 \text{ lb } \text{K}_2\text{O/bu}$ = $47 \text{ lb } \text{K}_2\text{O} (78 \text{ lbs/ac Potash})$
- = 60 bu/acre (Soybean) x 1.17 lb K₂0/bu
- = 70 lb K_20 (117 lbs/ac Potash)
- = 80 bu/acre (Soybean) x 1.17 lb K_2 O/bu
- = 94 lb K_20 (157 lbs/ac Potash)

These values do not take soil test levels into consideration.

Example Scenario:

The Producer Appli	ied	200 lbs/acre DAP 150 lbs/acre Potash		
Soybean	<u>40 bu</u>	<u>60 bu</u>	<u>80 bu</u>	
Soil P	50	50	50	
Soy P	<u>65</u>	<u>98</u>	<u>130</u>	
TOTAL DAP/TSP	115	148	180	
Soil K	133	133	133	
Soy K	<u>78</u>	<u>117</u>	<u>157</u>	
TOTAL Potash	211	250	290	

P and K Help by Contributing to:

- 1. A Larger Root System.
- 2. More Above-Ground Residue.
- 3. Quicker Ground Cover/Row Closure.
- 4. Improved Water Use Efficiency.
- 5. Crop Resistance to Stresses/Diseases.

Cutting Back on Fertilizers WILL NOT:

- 1. Cut land taxes.
- 2. Cut interest rates.
- 3. Cut seed and pesticide costs.
- 4. Cut machinery costs.
- 5. Cut fuel costs.

Cutting Back on Fertilizers WILL:

- 1. Reduce yields per unit area.
- 2. Mine soil nutrients.
- 3. Reduce crop resistance to drought, disease, insect, and other stresses.
- 4. Reduce crop cover and residue resulting in greater risk of erosion.
- 5. Reduce profits.

Questions ???

"The soil is the mother of mankind and it will furnish him life and the material basis for happiness and comfort if he does not make too strong demands upon it."

Dr. James Thorp, Purdue Univ., 1936.